
Argonne Leadership Computing Facility1

Tensorflow, Pytorch and
Horovod
Corey Adams
Assistant Computer Scientist, ALCF

Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

datascience@alcf.anl.gov

Corey Adams Xiao-Yong Jin Murat Keceli Elise Jennings

Alvaro Vazquez

Mayagoitia

Tom Uram

Taylor Childers

Venkat VishwanathHimanshu Sharma

Prasanna
Balaprakash

Ganesh Sivaraman

Adrian Pope

Misha Salim Antonio Villarreal

Bethany Lusch

Murali Emani

Huihuo Zheng

mailto:datascience@alcf.anl.gov

Argonne Leadership Computing Facility3

ALCF Datascience Group Supports …

• Software: optimized builds of important ML and DL software (tensorflow,
pytorch, horovod)

• Projects: datascience members work with ADSP projects, AESP projects, and
other user projects to help users deploy their science on ALCF systems

• Users: we are always interested to get feedback and help the users of big data
and learning projects, whether you’re reporting a bug or telling us you got great
performance.

Argonne Leadership Computing Facility4

What is Deep Learning?

Deep learning is …
• an emerging exploding field of research that is transforming how we do science.
• able to outperform humans on many complex tasks such as classification, segmentation, regression
• able to replace data and simulation with hyper realistic generated data
• expensive and time consuming to train

Photo from Analytics Vidhya

https://thispersondoesnotexist.com

https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/

Argonne Leadership Computing Facility5

Deep Learning and Machine Learning on Aurora

• Intel’s discrete GPUs (Xe) will drive accelerated single node performance

• Powerful CPUs will keep your GPUs fed with data and your python script moving along quickly

• High performance interconnect will let you scale your model training and inference to large
scales.

• Optimized IO systems will ensure you can keep a distributed training fed with data at scale.

This talk: deep learning frameworks are already run on supercomputers. We’ll cover all of
the fundamentals of these frameworks.

Aurora will be an Exascale system highly optimized for Deep Learning

Argonne Leadership Computing Facility6

Tensorflow

https://www.tensorflow.org

https://www.tensorflow.org/

Argonne Leadership Computing Facility7

Tensorflow
Tensorflow is high level framework for gluing together math operations in a way that is useful for machine learning.

Tensorflow supports predominantly math operations relevant to neural networks, such as:

• Convolutions

• Dense Layers

• Activations

• Normalization Layers

• Pooling and Un-Pooling layers

• Reshaping, concatenation, splitting, and other tensor manipulation functions

• Loss functions and core math functions

• … many others

Tensorflow abstracts away the details of applying these operations to allow users to spend most of their time on what

matters: developing their models and applications

Tensorflow comes with several “backends” that have highly optimized kernels for executing individual operations. Different

back ends for CPU, GPU(nvidia), and there will be a performant backend for A21 GPUs.

• Not all operations are as optimized as others, so your mileage may vary if you need performance but use non-standard

ops.

Argonne Leadership Computing Facility8

Tensorflow Example 1 - Keras
import tensorflow as tf
mnist = tf.keras.datasets.mnist

Load the dataset and cast to a normalized floating point image:
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')])

model.compile(optimizer='adam’,
loss='sparse_categorical_crossentropy', metrics=['accuracy’])

model.fit(x_train, y_train, epochs=5, batch_size=64) model.evaluate(x_test, y_test)

Argonne Leadership Computing Facility9

Tensorflow – Example 2 (Part 1/3)

import tensorflow as tf
import numpy
import time
Enable eager execution
tf.enable_eager_execution()

mnist = tf.keras.datasets.mnist

Load the dataset and cast to the right formats:
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

x_train, x_test = x_train.reshape([60000,28,28,1]), x_test.reshape([10000,28,28,1])
y_train, y_test = y_train.astype(numpy.int32), y_test.astype(numpy.int32)

Argonne Leadership Computing Facility10

Tensorflow – Example 2 (Part 2/3)
class MyModel(tf.keras.Model):

def __init__(self):
super(MyModel, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu’)
self.flatten = tf.keras.layers.Flatten()
self.d1 = tf.keras.layers.Dense(128, activation='relu’)
self.d2 = tf.keras.layers.Dense(10, activation='softmax’)

def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)

Create an instance of the model
model = MyModel()
Use a list of indexes to shuffle the dataset each epoch
indexes = numpy.arange(len(x_train))
epochs = 5; batch_size = 64
Create an instance of an optimizer:
optimizer=tf.train.AdamOptimizer()

Argonne Leadership Computing Facility11

Tensorflow – Example 2 (Part 3/3)
for epoch in range(5):

Shuffle the indexes:
numpy.random.shuffle(indexes)
for batch in range(batch_size):

batch_indexes = indexes[batch*batch_size:(batch+1)*batch_size]
images, labels = x_train[batch_indexes], y_train[batch_indexes].reshape([batch_size,])

Gradient tape indicates to TF to build a graph on the fly.
with tf.GradientTape() as tape:

This line is the forward pass of the network:
(The first call to model will initialize the weights)
logits = model(images)
Loss value is computed imperatively
loss_value = tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)

Compute the backward pass with the gradient tape:
grads = tape.gradient(loss_value, model.trainable_variables)
Use the optimizer to update the gradients:
optimizer.apply_gradients(zip(grads, model.trainable_variables))

Argonne Leadership Computing Facility12

Thoughts on Tensorflow for HPC
• Tensorflow is heavily optimized, but python is not.

• As much as possible, do preprocessing and IO with optimized libraries
(numpy, hdf5, tensorflow itself)

• Use the latest versions of tensorflow
• They often include performance improvements, sometimes very dramatic.

• Tensorflow (standard) builds and compiles a computation graph
• Can do operation merging such as BatchNorm + ReLU

• Still possible with eager execution
• Eager Execution is already available but may be the default by Aurora

• Conceptually simpler, but can still get full acceleration
• Can be challenging to get full utilization of an accelerator
• IO can easily become a bottleneck – more later..

Argonne Leadership Computing Facility13

PyTorch

https://pytorch.org

https://pytorch.org/

Argonne Leadership Computing Facility14

PyTorch Details
• Pytorch is fully pythonic: no Sessions, no graphs, no fit functions, etc.

• With great power comes great responsibility:
• Pro: you can do nearly anything in the ML/DL space

• Con: you have to do many things deliberately

“At its core, PyTorch provides two main features:

An n-dimensional Tensor, similar to numpy but can run on GPUs

Automatic differentiation for building and training neural networks”

* There are also a lot of really useful predefined tools for building and training
models, getting fine grained control flow and conditionals (Useful for RNNs). Also
supports optimized static models.

Argonne Leadership Computing Facility15

PyTorch Example (1/4)
import torch
import torchvision
import numpy

train_set = torchvision.datasets.MNIST('./', train=True, download=True, transform
= torchvision.transforms.ToTensor())
test_set = torchvision.datasets.MNIST('./', train=False, download=True, transform
= torchvision.transforms.ToTensor())
We can get directly at the tensors:
x_test = test_set.data.reshape([10000,1,28,28]).type(torch.FloatTensor)
y_test = test_set.targets
x_train = train_set.data.reshape([60000,1,28,28]).type(torch.FloatTensor)
y_train = train_set.targets

Argonne Leadership Computing Facility16

PyTorch Example (2/4)
class MyModel(torch.nn.Module):

def __init__(self):
super(MyModel, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3)
self.pool1 = torch.nn.MaxPool2d(kernel_size=2)
self.conv2 = torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3)
self.pool2 = torch.nn.MaxPool2d(kernel_size=2)
self.d1 = torch.nn.Linear(in_features=64*5*5, out_features=128)
self.d2 = torch.nn.Linear(in_features=128, out_features=10)

def forward(self, x):
x = self.conv1(x)
x = torch.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = torch.relu(x)
x = self.pool2(x)
x = torch.flatten(x, 1, -1)
x = self.d1(x)
x = torch.relu(x)
return self.d2(x)

Argonne Leadership Computing Facility17

PyTorch Example (3/4)
Create an instance of the model
model = MyModel()

Use a list of indexes to shuffle the dataset each epoch
indexes = numpy.arange(len(train_set))

epochs = 5
batch_size = 128

Create an instance of an optimizer:
optimizer=torch.optim.Adam(model.parameters())

loss_operation = torch.nn.CrossEntropyLoss()

Argonne Leadership Computing Facility18

PyTorch Example (4/4)
for epoch in range(epocs):

Shuffle the indexes:
numpy.random.shuffle(indexes)
for batch in range(len(indexes/batch_size)):

if (batch+1)*batch_size > 60000:
continue

batch_indexes = indexes[batch*batch_size:(batch+1)*batch_size]
images = x_train[batch_indexes]
labels = y_train[batch_indexes].reshape([batch_size,])

Set the model to training mode:
model.train()
Reset the gradient values for this step:
optimizer.zero_grad()
Compute the logits:
logits = model(images)
Loss value is computed imperatively
loss = loss_operation(input=logits, target=labels)
This call performs the back prop:
loss.backward()
This call updates the weights using the optimizer
optimizer.step()

Argonne Leadership Computing Facility19

Tensorflow or Pytorch – Which should I use?
It depends on your application and preference.
1. Performance: Each can have slightly better performance on different model

types, in particular pytorch is more suited for RNNs because of it’s dynamic
graph building.

2. Performance: With big models on powerful accelerators, both frameworks
perform very well with little difference on the same models.

1. If using a custom model, mileage may vary…
3. User Experience: Pytorch is a bit easier to learn from numpy/python skills

already acquired, but tensorflow has better documentation.
4. User Experience: Tensorflow is harder to debug a graph, but has tensorboard

built in. Pytorch can use tensorboard with tensorboardX package.
5. Ease of Use: If you like to do everything yourself, pytorch is easier. If you like

to have most pieces filled in for you, tensorflow (particularly keras) is easier.

Argonne Leadership Computing Facility20

Tensorflow, Pytorch but without python?
• Tensorflow has a C and C++ API for execution directly from lower level software

• https://www.tensorflow.org/guide/extend/cc
• (You can also extend tensorflow from C++ with new ops)

• Pytorch also has a C++ API:
• https://pytorch.org/cppdocs/
• You can similarly build new ops, leverage the tensors + autograd feature
• You can also train a model in python, and run it directly at inference in C++

These frameworks have a host of optimized operations and can be very
useful outside of python.

https://www.tensorflow.org/guide/extend/cc
https://pytorch.org/cppdocs/

Argonne Leadership Computing Facility21

What happened to numpy?
(Nothing - only getting better!)

Numpy has been the reigning champion of performance in python - often has
more diverse operations implemented, sklearn, etc.

• Numpy is not ignored in the machine learning space:
https://github.com/google/jax

• JAX (formerly autograd) enables automatic differentiation of numpy
operations

Numba accelerates python code in general (Including GPU optimizations for
today’s top GPUs)

• Does just-in-time compilation on python code, full integration with numpy,
GPU offloading ...

https://github.com/google/jax

Argonne Leadership Computing Facility22

What happened to numpy?
(Nothing - only getting better!)

Numpy has been the reigning champion of performance in python - often has
more diverse operations implemented, sklearn, etc.

• Numpy is not ignored in the machine learning space:
https://github.com/google/jax

• JAX (formerly autograd) enables automatic differentiation of numpy
operations

Numba accelerates python code in general (Including GPU optimizations for
today’s top GPUs)

• Does just-in-time compilation on python code, full integration with numpy,
GPU offloading ...

Numpy + numba + JAX = core of TF, torch

https://github.com/google/jax

Argonne Leadership Computing Facility23

MKL and MKL-DNN DNNL

“One Solution for Multiple Environments

Intel® Math Kernel Library (Intel® MKL) optimizes code with minimal effort for future generations of Intel® processors. It is
compatible with your choice of compilers, languages, operating systems, and linking and threading models”

“Deep Neural Network Library (DNNL) is an open-source performance library for deep learning applications. The library
includes basic building blocks for neural networks optimized for Intel Architecture Processors and Intel Processor Graphics.”

Intel is committed to delivering high performance versions of MKL, MKL-DNN DNNL for the Xe accelerators with full
integration into pytorch and tensorflow.

If you have heard of CUDA and CUDNN, this is not a surprise.

Argonne Leadership Computing Facility24

Machine Learning and HPC

Time to Solution (Training) – with scalable learning techniques, you can
process more images per second, reduce the time per epoch, and reach a
trained network faster.

Quality of Solution – with more compute resources available, you can perform
hyperparameter searches to optimize network designs and training schemes.
With powerful accelerators, you can train bigger and more computationally
intense networks.

Inference Throughput – with high bandwidth IO, it is easy to scale up the
throughput of inference techniques for deep learning.

Accelerate and improve an application’s:

High Performance Computing can
improve all aspects of training and
inference in machine learning.

Argonne Leadership Computing Facility25

Distributed Learning with Horovod
Machine learning is a very important workflow for current and future supercomputing systems.
How can you accelerate learning with more computing power?

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Argonne Leadership Computing Facility26

What is Distributed Learning?

Data Parallel learning – with N nodes, replicate your model on each node.
After the forward and backward computations, average the gradients across all
nodes and use the averaged gradients to update the weights. Conceptually, this
multiplies the minibatch size by N.

Model Parallel Learning – for models that don’t fit on a single node, you can
divide a single model across multiple locations. The design of distributing a
model is not trivial, but tools are emerging.

Both (“Mesh” training) – Using n nodes for a single model, and N = k*n nodes
for distributed training, you can achieve accelerated training of extremely large
or expensive models.

The backpropagation algorithm is unchanged at it’s heart.

Argonne Leadership Computing Facility27

Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique
input data and performs
calculations
independently.

All nodes communicate to average gradients.

Each Node gets it’s own
copy of the model.

Training Process

Model Gradients Averaged
Gradients

IO/Storage

Training Process

Model Gradients Averaged
Gradients

Training Process

Model Gradients Averaged
Gradients

Argonne Leadership Computing Facility28

Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique
input data and performs
calculations
independently.

All nodes communicate to average gradients.

Each Node gets it’s own
copy of the model.

Training Process

Model Gradients Averaged
Gradients

IO/Storage

Training Process

Model Gradients Averaged
Gradients

Training Process

Model Gradients Averaged
Gradients

Scaling Challenges

IO requires organization
to ensure unique
batches.

IO contention with
many nodes requires
parallel IO solutions

Computation stalls during communication:
keeping the communication to computation
ratio small is important for effective scaling.

Initialization must be
identical or synchronized,
and
checkpointing/summary
information must be
managed with just one
node.

Argonne Leadership Computing Facility29

Data Parallel Learning

ResNet50 on
Theta

Argonne Leadership Computing Facility30

Data Parallel Learning
Horovod

Initialize horovod (hvd.init()).

Wrap the optimizer in hvd.DistributedOptimizer.

– This uses the underlying optimizer for gradient calculations, and performs an averaging
of all gradients before updating.

– Can adjust the learning rate to account for a bigger batch size.

Initialize the networks identically, or broadcast one network’s weights to all others.

Ensure snapshots and summaries are only produced by one rank.

Horovod focuses on handling collective communication so you don’t have to, but lets you
use all of the tools of your favorite framework. Compatible with mpi4py.

The simplest technique for data parallel learning

Horovod is an open source data
parallel training software compatible
with many common deep learning
frameworks.

Meet Horovod
Github

https://github.com/horovod/horovod

Argonne Leadership Computing Facility31

Horovod Example Code

Tensorflow
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

Argonne Leadership Computing Facility32

Horovod Example Code

Keras
import keras
import tensorflow as tf
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5’))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

Argonne Leadership Computing Facility33

Horovod Example Code

Pytorch
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)!
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

Argonne Leadership Computing Facility34

Effects of Distributed Learning
Increased Batch size means improved estimate of gradients.

– Scale by N nodes? Sqrt(N)?

– Scale in a layerwise way? See paper: Layerwise Adaptive Rate Scaling (LARS)

Increased learning rate can require warm up iterations.

– See paper: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Bigger minibatch means less iterations for the same number of epochs.

– May need to train for more epochs if another change is not made like boosting the learning rate.

https://arxiv.org/pdf/1708.03888.pdf
https://arxiv.org/pdf/1708.03888.pdf

Argonne Leadership Computing Facility35

Mesh Learning

Why might you need a Mesh?

• Memory limitations due to CNN size (number of parameters)

• Memory limitations due to input size (massive images, 3D volumes, etc)

Mesh Scaling is not trivial:

• Computations need to be distributed in an intelligent way to prevent idle nodes

• Communication needs to happen frequently during both the forward/backward pass

• Message passing organization details arise from forward/backward small-group

communications and multi-group communications

Expect mesh scaling to get easier over the next few years (or wait for bigger, more
powerful nodes?)

When data-parallel isn’t enough…

Tensorflow Mesh

https://github.com/tenso
rflow/mesh

https://github.com/tensorflow/mesh

Argonne Leadership Computing Facility36

IO for Machine Learning
With optimized models for training and inference, keeping your network fed
with data can become the biggest bottleneck in training.

Some general good practices that will be important on big, powerful nodes on Aurora:

1. Use parallel IO whenever possible

1. Could feed each rank from different files, or

2. Use mpi IO to have each rank read it’s own batch from a file, or

3. Use several ranks to read data and MPI to scatter data to remaining ranks

1. This is most practical in big, at-scale trainings

2. Take advantage of the data storage

1. Using striping on lustre

2. Use the right optimizations for Aurora

3. Preload data when possible

1. Offloading to a GPU frees CPU cycles for loading the next batch of data – you can minimize
IO latency this way.

Argonne Leadership Computing Facility37

mpi4py and h5py
• Loading and preprocessing of data can be done efficiently in python with mpi4py and

h5py.
• mpi4py is python wrapper for mpi, with compatibility for general python objects (slow) and

numpy objects (fast)
• Support for many mpi operations:

• Point to point communication
• Collectives
• Scatter/gather

• Compatible with horovod
• Use functions with Uppercase syntax (Send, Receive, Scatterv, Gatherv) for numpy objects
• Use functions with lowercase syntax (send, receive, scatter, gather) for generic python

objects
• h5py is the hdf5 python wrapper and also supports parallel hdf5, using mpi4py

• Need parallel hdf5 libraries to use this

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://mpi4py.readthedocs.io/en/stable/intro.html
http://docs.h5py.org/en/stable/mpi.html

Argonne Leadership Computing Facility38

Hyperparameter Searches

Hyperparameter optimization is the fine tuning of your network parameters to
optimize your network’s performance.

• Search space is combinatorically large

• Search space is “awkward” – some continuous values, some discrete values,
some values are just a few choices

• Algorithms to search over hyper parameters are challenging

• Random search? Surrogate Model?

• This is a challenging but important workflow. Aurora will have enormous
compute power, allowing you to scale out a hyper parameter search to very
large searches.

https://deephyper.readthedocs.io/en/latest/

https://deephyper.readthedocs.io/en/latest/

Argonne Leadership Computing Facility39

Lower Precision Deep Learning

GPU accelerators are capable of
faster computation on smaller
data types – this will be an
important technique on Aurora.

• Training can be done in half
precision

• Inference can be done in
integer precision.

• Nvidia int8 inference
• Intel int8 inference

https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/
https://intel.github.io/mkl-dnn/ex_int8_simplenet.html

Argonne Leadership Computing Facility40

Lower Precision Deep Learning - Training

https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

With lower precision, you can easily have underflow or overflow of
weights and activations. Can address with loss scaling, keeping a higher
precision (float32) copy of weights, accumulating matrix multiplies into
float32…

https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

Argonne Leadership Computing Facility41

Lower Precision Deep Learning - Bfloat16

Bfloat 16 is a new data format that keeps as much precision as float32 (single precision) in the exponent, but truncates the
fraction.
• Underflow/overflow in gradients is no longer an issue if a model converges with float32
• Hardware acceleration is at the same power as float16 rather than float32
• Tensorflow already supports bfloat16 on TPUs (Google first proposed it), Intel has full support behind bfloat16

Expect to accelerate your app even further on Aurora with half precision.

Argonne Leadership Computing Facility42

Performance Measurements – Deep
Learning

Deep Learning workflows typically are diverse in requirements:

• Start in python

• Call upon IO libraries to read all or part of a dataset

• Feed data into an optimized (compared to python) library for ML/DL algorithms

• Use Horovod to communicate between nodes and average gradients

Many different pieces benefit from different profiling techniques:

• Timing based profiling (global_step/second, images/second)

• Python line based profiling (cProfile)

• Advanced Profiling Tools (Vtune, Advisor)

How to measure performance for tensorflow/pytorch?

Argonne Leadership Computing Facility43

Time Stamp “Profiling”

train Step 363 metrics: loss: 2.21, accuracy: 0.961 (1.5e+01s / 0.066 IOs / 3.0)
train Step 364 metrics: loss: 2.14, accuracy: 0.962 (1.6e+01s / 0.053 IOs / 3.2)
train Step 365 metrics: loss: 2.09, accuracy: 0.96 (1.5e+01s / 0.053 IOs / 3.0)
train Step 366 metrics: loss: 2.1, accuracy: 0.963 (1.5e+01s / 0.06 IOs / 3.0)

Timing printouts are the first stop for understanding performance of training algorithms for deep learning. From one of
my own applications, I catch time stamps for:
• forward/backward pass of the network
• time required for IO
• time required to synchronize gradients across nodes:

Pros Cons
• Very easy using datetime.datetime.now()
• Trivial to analyze in the log files
• Can give a good top-level, cross

software/system comparison using
images/second or global-step/second for the
entire application

• System Independent (laptop vs. HPC node, etc)

• Not useful for finding hotspots, only for
monitoring know blocks of easily separable code

• Overly coarse and useless for optimizations,
only for monitoring for problems

Argonne Leadership Computing Facility44

Tensorboard Profiling
For Tensorflow applications, you can visualize tensorflow application performance for each node of your graph using
tensorboard, as well chrome traces.

Pros Cons
• Gives a good idea of what nodes in your graph

are most resource intensive (memory usage,
computation time)

• Pretty easy to setup and use via
tf.train.ProfilerHook

• Can be difficult to analyze graphical form in
tensorboard, compared to sorted lists of
operations in other profilers

• Doesn’t reveal hardware utilization metrics or
performance.

• Profiling only available for tensorflow

https://www.tensorflow.org/api_docs/python/tf/train/ProfilerHook

Argonne Leadership Computing Facility45

Python cProfile
For the diverse set of workflows you need to stitch together with python, it can be very
useful to use python’s built in profiling module cProfile:

Generates a list of function calls, time spent, number of calls, etc. Lots of open source
tools for interpreting and analyzing the results, such as here, here, and here

python –m cProfile –o cprofile_data.prof script.py

>>> import pstats
>>> p = pstats.Stats("cprofile_data.prof")
>>> p.sort_stats("time").print_stats(3)
Fri Apr 5 20:13:02 2019 cprofile_data

1431679 function calls (1401373 primitive calls) in 673.782 seconds

Ordered by: internal time
List reduced from 3212 to 3 due to restriction <3>

ncalls tottime percall cumtime percall filename:lineno(function)
50 258.029 5.161 258.029 5.161 {method 'run_backward' of 'torch._C._EngineBase' objects}

2050 176.755 0.086 176.755 0.086 {built-in method
sparseconvnet.SCN.SubmanifoldConvolution_updateOutput}

32/31 88.808 2.775 88.909 2.868 {built-in method _imp.create_dynamic}

https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara
https://jiffyclub.github.io/snakeviz/
https://github.com/ymichael/cprofilev

Argonne Leadership Computing Facility46

Python line_profiler
Python also has a line_profiler tool which is useful for measuring expensive functions that
you write (like a training loop)

Gives you a line-by-line measurement of your functions:

kernprof –l script.py

Line # Hits Time Per Hit % Time Line Contents
.......

66 300005 417866.0 1.4 0.8 for batch in range(len(indexes/batch_size)):
67 300000 447185.0 1.5 0.8 if (batch+1)*batch_size > 10000:
68 299610 403266.0 1.3 0.8 continue
69
70 390 3375.0 8.7 0.0 batch_indexes = indexes[batch*batch_size:(batch+1)*batch_size]
71 390 54922.0 140.8 0.1 images = x_train[batch_indexes]
72 390 15930.0 40.8 0.0 labels = y_train[batch_indexes].reshape([batch_size,])
73
74 # Set the model to training mode:
75 390 44727.0 114.7 0.1 model.train()
76 # Reset the gradient values for this step:
77 390 30214.0 77.5 0.1 optimizer.zero_grad()
78 # Compute the logits:
79 390 11985557.0 30732.2 22.5 logits = model(images)
80
81
82 # Loss value is computed imperatively
83 390 44049.0 112.9 0.1 loss = loss_operation(input=logits, target=labels)
84 # This call performs the back prop:
85 390 17814337.0 45677.8 33.5 loss.backward()
86 # This call updates the weights using the optimizer
87 390 671574.0 1722.0 1.3 optimizer.step()

Argonne Leadership Computing Facility47

Python cProfile

Pros Cons
• It’s open source, native python, extremely easy

to use.
• A lot of tools available for results interpretation.

• Doesn’t go beyond python function calls.
• Despite available tools, relatively high effort

required to make sense of the results.

Argonne Leadership Computing Facility48

Application Performance Snapshot

• Very easy to use

• Tracks important hardware metrics:

• Thread Load Balancing

• Vectorization

• CPU Usage

Pros Cons

• Only high level information – but then again, that

is the design of this tool.

Argonne Leadership Computing Facility49

Application Performance Snapshot
APS generates a highlevel performance snapshot of your application. Easy to run:

Results can be viewed in a single html file, or via command line:

Summary information
HW Platform : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type : Driverless Perf system-wide counting
Used statistics : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O. Perform function or source
line-level profiling with tools like Intel(R) VTune(TM) Amplifier to discover why the CPU is underutilized.
CPU Utilization: 6.50%

| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

aps --result-dir=aps_results/ python /full/path/to/script.py

Argonne Leadership Computing Facility50

Intel Vtune – Advanced Hotspots

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -collect advanced-hotspots -finalization-mode=none -r vtune-result-
dir_advancedhotspots/ python /full/path/to/script.py

Vtune advanced hotspots can give a very useful report of what your CPUs are doing, how effectively the are running,
etc. Slightly more involved to use:

You don’t have to, but should run the finalization after the run completes (do this from the login nodes):

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots

source /opt/intel/vtune_amplifier/apsvars.sh
amplxe-gui vtune-result-dir_advancedhotspots

Argonne Leadership Computing Facility51

Intel Vtune – Advanced Hotspots

• You can see the activity of each thread, and the
functions that cause it.

• Give a bottom up and top down view, very useful
for seeing which functions are hotspots and
which parts of your workflow are dominant.

• Allows line by line analysis of source code.

Pros Cons
• Doesn’t keep information at python level.
• If your workflow uses JIT, you can lose almost

all useful information.
• Understanding the information present takes

some practice.

source /opt/intel/vtune_amplifier/apsvars.sh
amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view
your results:

Argonne Leadership Computing Facility52

Intel Vtune – Hotspots
Vtune hotspots is similar to advanced hotspots but keeps python information – very very useful for profiling.

Pros Cons
• Similar benefits as hotspots
• Additionally, allows you to track activity from

python code
• Same finalization techniques and gui as

advanced hotspots

• Will not run with more than a few threads,
making it impossible to profile the “real”
application.

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -collect hotspots -finalization-mode=none -r vtune-result-dir_hotspots/

Argonne Leadership Computing Facility53

Intel Vtune – Hotspots

Argonne Leadership Computing Facility54

Profiling Example – Tensorflow FFTs
One user reported very very slow performance with tensorflow on Theta, even though they were using all of the
optimized settings. Using vtune hotspots and advanced hotspots, we discovered (for a shortened run):
• 31% of the application time was spent doing FFTs with tensorflow
• 10% was spent creating tensorflow traces
• 8% was computing loss functions.
• 25% was spent creating and optimizing the tensorflow graph (measured for a short run, this is a smaller fraction for

production runs)

Talking with Intel engineers revealed that the most important hotspot (FFT) was underperforming on Theta by up to
50x compared with the optimized FFT in Numpy.

For this workflow, replacing tensorflow with numpy FFT + autograd for gradient calculations made a huge impact in their
performance.

Argonne Leadership Computing Facility55

Profiling Example – Tensorflow CNN
A user reported seeing a significant degradation in performance with tensorflow when going from single
image to multi-image batches.

Batch Size 1 showed decent
balance between threads,
even if utilization was lower
than ideal.

Argonne Leadership Computing Facility56

Profiling Example – Tensorflow CNN
A user reported seeing a significant degradation in performance with tensorflow when going from single
image to multi-image batches.

Batch Size 2

Batch Size 3

Batch Size 4

Argonne Leadership Computing Facility57

Profiling Example – Tensorflow CNN
As seen above, the parallelization of operations broke when batch size was increased beyond 1.

Appeared to be a bug in tf1.12 on CPUs, but resolved in tf1.13:

Th
ro

ug
hp

ut
 (f

ov
/s

ec
)

Argonne Leadership Computing Facility58

Conclusions

Argonne Leadership Computing Facility59

Thank you!

Questions?

Reach out to me, or the group:
corey.adams@anl.gov
datascience@alcf.anl.gov

Argonne Leadership Computing Facility59

mailto:corey.adams@anl.gov
mailto:datascience@alcf.anl.gov

